2023 AP Daily: Practice Sessions

1. Let f be the function with first derivative $f^{\prime}(x)=2 \cos \left(x^{2}\right)$. If $f(3)=7.5$, what is the value of $f(2)$?
A. 13.554
B. 7.983
C. 7.017
D. 6.193

x	$h(x)$
3	8
10	6
12	0

2. The table shown gives values of a continuous function h at selected values of x. Based on the information in the table, which of the following must be true?
A. $h(x)=7$ occurs exactly once in the interval $3<x<12$.
B. h has a minimum at $x=12$.
C. $\lim _{x \rightarrow 10} h(x)=6$
D. $h^{\prime}(c)=-3$ for at least one value $x=c$ in the open interval $10<x<12$.
3. Let f be a continuous function such that $\int_{1}^{10} f(x) d x=7$ and $\int_{5}^{10} f(x) d x=-8$. What is the value of $\int_{1}^{5}[2 f(x)+3] d x ?$
A. 10
B. 27
C. 33
D. 42
4. The temperature in a gym at 6:00 am $(t=6)$, is 65 degrees Fahrenheit. Over the next 16 hours ($6 \leq t \leq 22$), the differentiable function $h(t)$, measures the rate of temperature change in the gym in degrees Fahrenheit per hour where t is hours since midnight. Which of the following is the best interpretation of $65+\int_{6}^{18} h(t) d t$?
A. The temperature of the gym, in degrees Fahrenheit, at 6:00 pm.
B. The average temperature of the gym, in degrees Fahrenheit, between 6:00 am and 6:00 pm.
C. The change in the temperature of the gym, in degrees Fahrenheit, between 6:00 am and 6:00 pm.
D. The rate at which the temperature in the gym is changing, in degrees Fahrenheit per hour, at 6:00 pm.
