2023 AP Daily: Practice Sessions

AP Calculus BC Session 1 - MCQ

1. Which of the following is a logistic differential equation whose solution has carrying capacity of 50?

A.
$$\frac{dy}{dt} = 50y$$

$$B. \quad \frac{dy}{dt} = \frac{y}{50} (1 - y)$$

C.
$$\frac{dy}{dt} = 50y(1-y)$$

D.
$$\frac{dy}{dt} = y(1 - \frac{y}{50})$$

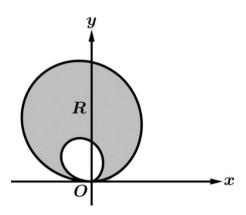
2. Which of the following series is conditionally convergent?

A.
$$\sum_{n=1}^{\infty} \frac{(-1)^{2n+3}}{5n+1}$$

B.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+3}{5n+1}$$

C.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+3}{5n^2+1}$$

D.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n^2+3}{5n^4+1}$$


3. The power series $\sum_{n=0}^{\infty} a_n (x-5)^n$ converges conditionally at x=9. For which of the following pairs of x values must $\sum_{n=0}^{\infty} a_n (x-5)^n$ also converge?

A.
$$x = 1 \text{ and } x = 7$$

B.
$$x = 2$$
 and $x = 10$

C.
$$x = 2$$
 and $x = 8$

D.
$$x = 0$$
 and $x = 6$

4. The graph of the polar function $r(\theta) = \frac{\theta}{2}\sin(\theta)$ is shown in the figure above for $0 \le \theta \le 2\pi$. Let R be the shaded region between the inner and outer loops, as shown above. Which of the following expressions gives the area of the region R?

A.
$$\frac{1}{2} \int_0^{\pi} (r(\theta))^2 d\theta$$

$$B. \frac{1}{2} \int_0^{2\pi} (r(\theta))^2 d\theta$$

C.
$$\frac{1}{2} \int_{\pi}^{2\pi} (r(\theta))^2 d\theta - \frac{1}{2} \int_{0}^{\pi} (r(\theta))^2 d\theta$$

D.
$$\frac{1}{2} \int_0^{2\pi} (r(\theta))^2 d\theta - \frac{1}{2} \int_{\pi}^{2\pi} (r(\theta))^2 d\theta$$

5. If $x(t) = 3t^2 - 5$ and $y(t) = t^3 - 4t + 2$ for t = 0, then $\frac{d^2y}{dx^2} =$

A.
$$\frac{3t^2+4}{6t^2}$$

B.
$$\frac{-18t^2 - 24}{(3t^2 - 4)^2}$$

C.
$$\frac{3t^2+4}{6t^2(3t^2-4)}$$

D.
$$\frac{3t^2+4}{36t^2}$$